Search results for " tracking control"

showing 2 items of 2 documents

Trajectory robust control of autonomous quadcopters based on model decoupling and disturbance estimation

2021

In this article, a systematic procedure is given for determining a robust motion control law for autonomous quadcopters, starting from an input–output linearizable model. In particular, the suggested technique can be considered as a robust feedback linearization (FL), where the nonlinear state-feedback terms, which contain the aerodynamic forces and moments and other unknown disturbances, are estimated online by means of extended state observers. Therefore, the control system is made robust against unmodelled dynamics and endogenous as well as exogenous disturbances. The desired closed-loop dynamics is obtained by means of pole assignment. To have a feasible control action, that is, the fo…

QuadcopterDisturbance (geology)Computer sciencelcsh:Electronicslcsh:TK7800-8360Motion controllcsh:QA75.5-76.95Computer Science ApplicationsSettore ING-INF/04 - AutomaticaArtificial IntelligenceControl theoryTrajectorylcsh:Electronic computers. Computer scienceFeedback linearizationdisturbance estimation extended state observers feedback linearization Quadcopter tracking controlRobust controlSoftwareDecoupling (electronics)International Journal of Advanced Robotic Systems
researchProduct

Tracking Control of Networked Multi-Agent Systems Under New Characterizations of Impulses and Its Applications in Robotic Systems

2016

This paper examines the problem of tracking control of networked multi-agent systems with multiple delays and impulsive effects, whose results are applied to mechanical robotic systems. Four kinds of impulsive effects are taken into account: 1) both the strengths of impulsive effects and the number of nodes injected with impulses are time dependent; 2) the strengths of impulsive effects occur according to certain probabilities and the number of nodes under impulsive control is time varying; 3) the strengths of impulses are time varying, whereas the number of nodes with impulses takes place according to certain probabilities; 4) both the strengths of impulses and the number of nodes with imp…

0209 industrial biotechnologyEngineeringTracking controlControl (management)02 engineering and technologyTracking (particle physics)robotic systems020901 industrial engineering & automationControl theory0202 electrical engineering electronic engineering information engineeringmulti-agent systemsElectrical and Electronic EngineeringRobot kinematicsbusiness.industryStochastic processMulti-agent systemtime-delaysComputer Science Applications1707 Computer Vision and Pattern RecognitionControl engineeringRobotic systemsLeader-following consensusControl and Systems EngineeringControl systemLeader-following consensus; multi-agent systems; robotic systems; time-delays; Tracking control; Control and Systems Engineering; Computer Science Applications1707 Computer Vision and Pattern Recognition; Electrical and Electronic Engineering020201 artificial intelligence & image processingbusinessIEEE Transactions on Industrial Electronics
researchProduct